Lớp 11Tài Nguyên

Bài 1 trang 29 SGK Hình học 11

Cho tam giác \(ABC\) có ba góc nhọn và \(H\) là trực tâm. Tìm ảnh của tam giác \(ABC\) qua phép vị tự tâm \(H\), tỉ số \( \frac{1}{2}.\)

Related Articles

Bạn đang xem: Bài 1 trang 29 SGK Hình học 11

Phương pháp giải – Xem chi tiết

+) Tìm ảnh của từng đỉnh. Ảnh của tam giác là tam giác tạo bởi ba điểm ảnh đó.

+) \({V_{(H,\frac 1 2)}}(M) = M’\Leftrightarrow \overrightarrow {HM’}  = \frac 1 2.\overrightarrow {HM} \)

Lời giải chi tiết

Gọi \(A’,B’,C’\) lần lượt là ảnh của \(A,B,C\) qua \({V_{\left( {H,\dfrac{1}{2}} \right)}}\) ta có:

+) \(A’ = {V_{\left( {H,\dfrac{1}{2}} \right)}}\left( A \right) \Rightarrow \overrightarrow {HA’}  = \dfrac{1}{2}\overrightarrow {HA} \)\( \Rightarrow A’\) là trung điểm của \(AH\).

+) \(B’ = {V_{\left( {H,\dfrac{1}{2}} \right)}}\left( B \right) \Rightarrow \overrightarrow {HB’}  = \dfrac{1}{2}\overrightarrow {HB} \)\( \Rightarrow B’\) là trung điểm của \(BH\).

+) \(C’ = {V_{\left( {H,\dfrac{1}{2}} \right)}}\left( C \right) \Rightarrow \overrightarrow {HC’}  = \dfrac{1}{2}\overrightarrow {HC} \)\( \Rightarrow C’\) là trung điểm của \(CH\).

Vậy \({V_{\left( {H,\frac{1}{2}} \right)}}(\Delta ABC) = A’B’C’\), trong đó  \(A’, B’, C’\) lần lượt là trung điểm  của \(HA, HB, HC\).

 Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 1 trang 29 SGK Hình học 11

Cho tam giác \(ABC\) có ba góc nhọn và \(H\) là trực tâm. Tìm ảnh của tam giác \(ABC\) qua phép vị tự tâm \(H\), tỉ số \( \frac{1}{2}.\)

Phương pháp giải – Xem chi tiết

+) Tìm ảnh của từng đỉnh. Ảnh của tam giác là tam giác tạo bởi ba điểm ảnh đó.

+) \({V_{(H,\frac 1 2)}}(M) = M’\Leftrightarrow \overrightarrow {HM’}  = \frac 1 2.\overrightarrow {HM} \)

Lời giải chi tiết

Gọi \(A’,B’,C’\) lần lượt là ảnh của \(A,B,C\) qua \({V_{\left( {H,\dfrac{1}{2}} \right)}}\) ta có:

+) \(A’ = {V_{\left( {H,\dfrac{1}{2}} \right)}}\left( A \right) \Rightarrow \overrightarrow {HA’}  = \dfrac{1}{2}\overrightarrow {HA} \)\( \Rightarrow A’\) là trung điểm của \(AH\).

+) \(B’ = {V_{\left( {H,\dfrac{1}{2}} \right)}}\left( B \right) \Rightarrow \overrightarrow {HB’}  = \dfrac{1}{2}\overrightarrow {HB} \)\( \Rightarrow B’\) là trung điểm của \(BH\).

+) \(C’ = {V_{\left( {H,\dfrac{1}{2}} \right)}}\left( C \right) \Rightarrow \overrightarrow {HC’}  = \dfrac{1}{2}\overrightarrow {HC} \)\( \Rightarrow C’\) là trung điểm của \(CH\).

Vậy \({V_{\left( {H,\frac{1}{2}} \right)}}(\Delta ABC) = A’B’C’\), trong đó  \(A’, B’, C’\) lần lượt là trung điểm  của \(HA, HB, HC\).

 Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close