Lớp 11Tài Nguyên

Bài 1 trang 77 SGK Hình học 11

Cho hai hình thang \(ABCD\) và \(ABEF\) có chung đáy lớn \(AB\) và không cùng nằm trong một mặt phẳng.

Related Articles

a) Tìm giao tuyến của các mặt phắng sau: \((AEC)\) và \((BFD)\), \((BCE)\) và \((ADF)\).

Bạn đang xem: Bài 1 trang 77 SGK Hình học 11

b) Lấy \(M\) là điểm thuộc \(DF\). Tìm giao điểm của đường thẳng \(AM\) với mặt phẳng \((BCE)\).

c) Chứng minh hai đường thẳng \(AC\) và \(BF\) không cắt nhau.

Phương pháp giải – Xem chi tiết

a) Tìm hai điểm chung của các mặt phẳng.

b) Tìm điểm chung của  \(AM\) với mặt phẳng \((BCE)\).

c) Sử dụng phương pháp phản chứng: Giả sử AC và BF đồng phẳng.

Lời giải chi tiết

a) Trong \((ABCD)\), gọi \(I=AC ∩ BD \). 

Do đó \(\left\{ \begin{array}{l}I \in AC \subset \left( {AEC} \right)\\I \in BD \subset \left( {BFD} \right)\end{array} \right.\) \( \Rightarrow I \in \left( {AEC} \right) \cap \left( {BFD} \right)\).

Trong \(( ABEF)\), gọi \(J=AE ∩ BF \)

Do đó \(\left\{ \begin{array}{l}J \in AE \subset \left( {AEC} \right)\\J \in BF \subset \left( {BFD} \right)\end{array} \right.\)\( \Rightarrow J \in \left( {AEC} \right) \cap \left( {BFD} \right)\).

Vậy \( (ACE) ∩ (BDF) = IJ\).

Trong \(\left( {ABCD} \right)\): gọi \(G = AD \cap BC\).

Khi đó \(\left\{ \begin{array}{l}G \in AD \subset \left( {ADF} \right)\\G \in BC \subset \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow G \in \left( {ADF} \right) \cap \left( {BCE} \right)\).

Trong \(\left( {ABEF} \right)\): gọi \(H = AF \cap BE\).

Khi đó \(\left\{ \begin{array}{l}H \in AF \subset \left( {ADF} \right)\\H \in BE \subset \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow H \in \left( {ADF} \right) \cap \left( {BCE} \right)\).

Vậy \((BCE) ∩ ( ADF) = GH\)

b) Trong \((AGH)\): Gọi \(N=AM ∩ GH\)

\( \Rightarrow \left\{ \begin{array}{l}N \in AM\\N \in GH \subset \left( {BGH} \right) \equiv \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow N = AM \cap \left( {BCE} \right)\)

c) Chứng minh bằng phương pháp phản chứng.

Giả sử \(AC\) và \(BF\) cùng nằm trong một mặt phẳng.

Khi đó \(BF \subset \left( {ABCD} \right)\) hay hai mặt phẳng \(\left( {ABCD} \right)\) và \(\left( {ABEF} \right)\) trùng nhau (mâu thuẫn giả thiết)

Do đó: \(AC\) và \(BF\) không cắt nhau.

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 1 trang 77 SGK Hình học 11

Cho hai hình thang \(ABCD\) và \(ABEF\) có chung đáy lớn \(AB\) và không cùng nằm trong một mặt phẳng.

a) Tìm giao tuyến của các mặt phắng sau: \((AEC)\) và \((BFD)\), \((BCE)\) và \((ADF)\).

b) Lấy \(M\) là điểm thuộc \(DF\). Tìm giao điểm của đường thẳng \(AM\) với mặt phẳng \((BCE)\).

c) Chứng minh hai đường thẳng \(AC\) và \(BF\) không cắt nhau.

Phương pháp giải – Xem chi tiết

a) Tìm hai điểm chung của các mặt phẳng.

b) Tìm điểm chung của  \(AM\) với mặt phẳng \((BCE)\).

c) Sử dụng phương pháp phản chứng: Giả sử AC và BF đồng phẳng.

Lời giải chi tiết

a) Trong \((ABCD)\), gọi \(I=AC ∩ BD \). 

Do đó \(\left\{ \begin{array}{l}I \in AC \subset \left( {AEC} \right)\\I \in BD \subset \left( {BFD} \right)\end{array} \right.\) \( \Rightarrow I \in \left( {AEC} \right) \cap \left( {BFD} \right)\).

Trong \(( ABEF)\), gọi \(J=AE ∩ BF \)

Do đó \(\left\{ \begin{array}{l}J \in AE \subset \left( {AEC} \right)\\J \in BF \subset \left( {BFD} \right)\end{array} \right.\)\( \Rightarrow J \in \left( {AEC} \right) \cap \left( {BFD} \right)\).

Vậy \( (ACE) ∩ (BDF) = IJ\).

Trong \(\left( {ABCD} \right)\): gọi \(G = AD \cap BC\).

Khi đó \(\left\{ \begin{array}{l}G \in AD \subset \left( {ADF} \right)\\G \in BC \subset \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow G \in \left( {ADF} \right) \cap \left( {BCE} \right)\).

Trong \(\left( {ABEF} \right)\): gọi \(H = AF \cap BE\).

Khi đó \(\left\{ \begin{array}{l}H \in AF \subset \left( {ADF} \right)\\H \in BE \subset \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow H \in \left( {ADF} \right) \cap \left( {BCE} \right)\).

Vậy \((BCE) ∩ ( ADF) = GH\)

b) Trong \((AGH)\): Gọi \(N=AM ∩ GH\)

\( \Rightarrow \left\{ \begin{array}{l}N \in AM\\N \in GH \subset \left( {BGH} \right) \equiv \left( {BCE} \right)\end{array} \right.\) \( \Rightarrow N = AM \cap \left( {BCE} \right)\)

c) Chứng minh bằng phương pháp phản chứng.

Giả sử \(AC\) và \(BF\) cùng nằm trong một mặt phẳng.

Khi đó \(BF \subset \left( {ABCD} \right)\) hay hai mặt phẳng \(\left( {ABCD} \right)\) và \(\left( {ABEF} \right)\) trùng nhau (mâu thuẫn giả thiết)

Do đó: \(AC\) và \(BF\) không cắt nhau.

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close