Lớp 12Tài Nguyên

Bài 10 trang 144 SGK Giải tích 12

Giải các phương trình sau trên tập số phức


Related Articles

Giải các phương trình sau trên tập số phức

LG a

Bạn đang xem: Bài 10 trang 144 SGK Giải tích 12

a) \(3z^2+ 7z + 8 = 0\)

Phương pháp giải:

Tính \(\Delta  = {b^2} – 4ac\). Gọi \(\delta\) là 1 căn bậc hai của \(\Delta\), khi đó phương trình có 2 nghiệm: \(\left[ \begin{array}{l}{z_1} = \dfrac{{ – b + \delta }}{{2a}}\\{z_2} = \dfrac{{ – b – \delta }}{{2a}}\end{array} \right.\)

Lời giải chi tiết:

\(3z^2+ 7z + 8 = 0\) có \(Δ = 49 – 4.3.8 = -47\)

Căn bậc hai của \(\Delta\) là \( \pm i\sqrt{47}\)

Vậy phương trình có hai nghiệm là: \({z_{1,2}} = {{ – 7 \pm i\sqrt {47} } \over 6}\)

LG b

b) \(z^4– 8 = 0\)

Phương pháp giải:

Đặt \(z^2=t\), đưa phương trình về dạng phương trình bậc hai và giải phương trình bậc hai đó, khi đó nghiệm \(z\) là căn bậc hai của các nghiệm \(t\) tìm được ở trên.

Lời giải chi tiết:

\(z^4– 8 = 0\)

Đặt \(t = z^2\), ta được phương trình : \({t^2} – 8 = 0 \Leftrightarrow t =  \pm \sqrt 8 \)

\(\begin{array}{l}t = \sqrt 8 \Rightarrow {z^2} = \sqrt 8 \Leftrightarrow z = \pm \sqrt {\sqrt 8 } = \pm \sqrt[4]{8}\\t = – \sqrt 8 \Rightarrow {z^2} = – \sqrt 8 \Leftrightarrow z = \pm i\sqrt {\sqrt 8 } = \pm i\sqrt[4]{8}\end{array}\)

Vậy phương trình đã cho có 4 nghiệm là: \({z_{1,2}} =  \pm \root 4 \of 8 ,{z_{3,4}} =  \pm i\root 4 \of 8 \)

LG c

c) \(z^4– 1 = 0\)

Phương pháp giải:

Đặt \(z^2=t\), đưa phương trình về dạng phương trình bậc hai và giải phương trình bậc hai đó, khi đó nghiệm \(z\) là căn bậc hai của các nghiệm \(t\) tìm được ở trên.

Lời giải chi tiết:

\(z^4– 1 = 0\)

Đặt \(t = z^2\), ta được phương trình : \({t^2} – 1 = 0 \Leftrightarrow t =  \pm 1\).

\(\begin{array}{l}t = 1 \Rightarrow {z^2} = 1 \Leftrightarrow z = \pm 1\\t = – 1 \Rightarrow {z^2} = – 1 \Leftrightarrow z = \pm i\end{array}\)

Vậy phương trình đã cho có 4 nghiệm là \(±1\) và \(±i\)

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 10 trang 144 SGK Giải tích 12

Giải các phương trình sau trên tập số phức


Giải các phương trình sau trên tập số phức

LG a

a) \(3z^2+ 7z + 8 = 0\)

Phương pháp giải:

Tính \(\Delta  = {b^2} – 4ac\). Gọi \(\delta\) là 1 căn bậc hai của \(\Delta\), khi đó phương trình có 2 nghiệm: \(\left[ \begin{array}{l}{z_1} = \dfrac{{ – b + \delta }}{{2a}}\\{z_2} = \dfrac{{ – b – \delta }}{{2a}}\end{array} \right.\)

Lời giải chi tiết:

\(3z^2+ 7z + 8 = 0\) có \(Δ = 49 – 4.3.8 = -47\)

Căn bậc hai của \(\Delta\) là \( \pm i\sqrt{47}\)

Vậy phương trình có hai nghiệm là: \({z_{1,2}} = {{ – 7 \pm i\sqrt {47} } \over 6}\)

LG b

b) \(z^4– 8 = 0\)

Phương pháp giải:

Đặt \(z^2=t\), đưa phương trình về dạng phương trình bậc hai và giải phương trình bậc hai đó, khi đó nghiệm \(z\) là căn bậc hai của các nghiệm \(t\) tìm được ở trên.

Lời giải chi tiết:

\(z^4– 8 = 0\)

Đặt \(t = z^2\), ta được phương trình : \({t^2} – 8 = 0 \Leftrightarrow t =  \pm \sqrt 8 \)

\(\begin{array}{l}t = \sqrt 8 \Rightarrow {z^2} = \sqrt 8 \Leftrightarrow z = \pm \sqrt {\sqrt 8 } = \pm \sqrt[4]{8}\\t = – \sqrt 8 \Rightarrow {z^2} = – \sqrt 8 \Leftrightarrow z = \pm i\sqrt {\sqrt 8 } = \pm i\sqrt[4]{8}\end{array}\)

Vậy phương trình đã cho có 4 nghiệm là: \({z_{1,2}} =  \pm \root 4 \of 8 ,{z_{3,4}} =  \pm i\root 4 \of 8 \)

LG c

c) \(z^4– 1 = 0\)

Phương pháp giải:

Đặt \(z^2=t\), đưa phương trình về dạng phương trình bậc hai và giải phương trình bậc hai đó, khi đó nghiệm \(z\) là căn bậc hai của các nghiệm \(t\) tìm được ở trên.

Lời giải chi tiết:

\(z^4– 1 = 0\)

Đặt \(t = z^2\), ta được phương trình : \({t^2} – 1 = 0 \Leftrightarrow t =  \pm 1\).

\(\begin{array}{l}t = 1 \Rightarrow {z^2} = 1 \Leftrightarrow z = \pm 1\\t = – 1 \Rightarrow {z^2} = – 1 \Leftrightarrow z = \pm i\end{array}\)

Vậy phương trình đã cho có 4 nghiệm là \(±1\) và \(±i\)

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close