Lớp 11Tài Nguyên

Bài 11 trang 108 SGK Đại số và Giải tích 11

Biết rằng ba số \(x, y, z\) lập thành một cấp số nhân và ba số \(x, 2y, 3z\) lập thành một cấp số cộng. Tìm công bội của cấp số nhân.

Related Articles

Bạn đang xem: Bài 11 trang 108 SGK Đại số và Giải tích 11

Phương pháp giải – Xem chi tiết

Sử dụng công thức SHTQ và tính chất của CSC và CSN.

Lời giải chi tiết

Giả sử ba số \(x, y, z\) lập thành một cấp số nhân với công bội \(q\) ta có: \(y = x.q\) và \(z = y.q = x.q^2\).

Ba số \(x, 2y, 3z\) lập thành một cấp số cộng nên:

\(x + 3z = 2. 2y \)

\(⇔ x + 3.(xq^2) = 4.(xq)\)

\( \Leftrightarrow x + 3x{q^2} – 4xq = 0\)

\(⇔ x. (1 + 3q^2– 4q) = 0 \)

\(⇔ x = 0\) hoặc \(3q^2– 4q + 1 = 0\)

Nếu \(x = 0\) thì \(x = y= z= 0\), \(q\) không xác định (loại)

Nếu \(x ≠ 0\) thì \(3q^2- 4q + 1 = 0⇔\left[ \matrix{q = 1 \hfill \cr q = {1 \over 3} \hfill \cr} \right.\)

Cách khác:

Gọi công bội của CSN \(x ; y ; z\) là \(q\).

\(\Rightarrow {\rm{ }}y = x.q{\rm{ }};{\rm{ }}z = x.{q^2}.\)

Lại có : \(x ; 2y ; 3z\) lập thành CSC

\(\begin{array}{*{20}{l}}
{ \Leftrightarrow {\rm{ }}2y{\rm{ }}-{\rm{ }}x{\rm{ }} = {\rm{ }}3z{\rm{ }}-{\rm{ }}2y}\\
{ \Leftrightarrow {\rm{ }}2.xq{\rm{ }}-{\rm{ }}x{\rm{ }} = {\rm{ }}3.x{q^2}\;-{\rm{ }}2.xq}\\
{ \Leftrightarrow {\rm{ }}x\left( {2q{\rm{ }}-{\rm{ }}1} \right){\rm{ }} = {\rm{ }}x.\left( {3{q^2}\;-{\rm{ }}2q} \right)}\\
{ \Leftrightarrow {\rm{ }}x.\left( {3{q^2}\;-{\rm{ }}4q{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0}
\end{array}\)

+ Nếu \(x = 0{\rm{ }} \Rightarrow y = z = 0\)

\( \Rightarrow {\rm{ }}q\) không xác định (loại).

+ Nếu \(x \ne 0{\rm{ }} \Rightarrow {\rm{ }}3{q^2}–4q + 1 = 0{\rm{ }} \Leftrightarrow {\rm{ }}q = 1\) hoặc \(q = \frac{1}{3}\)

Vậy CSN có công bội \(q = 1\) hoặc \(q = \frac{1}{3}\)

 Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 11 trang 108 SGK Đại số và Giải tích 11

Biết rằng ba số \(x, y, z\) lập thành một cấp số nhân và ba số \(x, 2y, 3z\) lập thành một cấp số cộng. Tìm công bội của cấp số nhân.

Phương pháp giải – Xem chi tiết

Sử dụng công thức SHTQ và tính chất của CSC và CSN.

Lời giải chi tiết

Giả sử ba số \(x, y, z\) lập thành một cấp số nhân với công bội \(q\) ta có: \(y = x.q\) và \(z = y.q = x.q^2\).

Ba số \(x, 2y, 3z\) lập thành một cấp số cộng nên:

\(x + 3z = 2. 2y \)

\(⇔ x + 3.(xq^2) = 4.(xq)\)

\( \Leftrightarrow x + 3x{q^2} – 4xq = 0\)

\(⇔ x. (1 + 3q^2– 4q) = 0 \)

\(⇔ x = 0\) hoặc \(3q^2– 4q + 1 = 0\)

Nếu \(x = 0\) thì \(x = y= z= 0\), \(q\) không xác định (loại)

Nếu \(x ≠ 0\) thì \(3q^2- 4q + 1 = 0⇔\left[ \matrix{q = 1 \hfill \cr q = {1 \over 3} \hfill \cr} \right.\)

Cách khác:

Gọi công bội của CSN \(x ; y ; z\) là \(q\).

\(\Rightarrow {\rm{ }}y = x.q{\rm{ }};{\rm{ }}z = x.{q^2}.\)

Lại có : \(x ; 2y ; 3z\) lập thành CSC

\(\begin{array}{*{20}{l}}
{ \Leftrightarrow {\rm{ }}2y{\rm{ }}-{\rm{ }}x{\rm{ }} = {\rm{ }}3z{\rm{ }}-{\rm{ }}2y}\\
{ \Leftrightarrow {\rm{ }}2.xq{\rm{ }}-{\rm{ }}x{\rm{ }} = {\rm{ }}3.x{q^2}\;-{\rm{ }}2.xq}\\
{ \Leftrightarrow {\rm{ }}x\left( {2q{\rm{ }}-{\rm{ }}1} \right){\rm{ }} = {\rm{ }}x.\left( {3{q^2}\;-{\rm{ }}2q} \right)}\\
{ \Leftrightarrow {\rm{ }}x.\left( {3{q^2}\;-{\rm{ }}4q{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0}
\end{array}\)

+ Nếu \(x = 0{\rm{ }} \Rightarrow y = z = 0\)

\( \Rightarrow {\rm{ }}q\) không xác định (loại).

+ Nếu \(x \ne 0{\rm{ }} \Rightarrow {\rm{ }}3{q^2}–4q + 1 = 0{\rm{ }} \Leftrightarrow {\rm{ }}q = 1\) hoặc \(q = \frac{1}{3}\)

Vậy CSN có công bội \(q = 1\) hoặc \(q = \frac{1}{3}\)

 Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close