Lớp 11Tài Nguyên

Bài 12 trang 108 SGK Đại số và Giải tích 11

Người ta thiết kế một tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích mặt đế tháp là \(12 288\) \(m^2\). Tính diện tích mặt trên cùng.

Bạn đang xem: Bài 12 trang 108 SGK Đại số và Giải tích 11

Phương pháp giải – Xem chi tiết

Diện tích các mặt lập thành một cấp số nhân. Sử dụng công thức SHTQ của CSN: \({u_n} = {u_1}.{q^{n – 1}}\).

Lời giải chi tiết

Gọi diện tích đáy tháp là S0; diện tích mặt trên của tầng 1; tầng 2; tầng 3; … lần lượt là \({S_1};{\rm{ }}{S_2};{\rm{ }}{S_3};{\rm{ }} \ldots ;{\rm{ }}{S_{11}}.\)

Ta có:

Diện tích đế tháp: \({S_0} = 12288\,{m^2}\)

Diện tích tầng 1: \({S_1} = \frac{1}{2}{S_0} = \frac{1}{2}.12288\,{m^2} = 6144\,{m^2}\)

Theo giả thiết diện tích của bề mặt trên mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới.

Do đó \((S_n)\) là CSN có số hạng đầu \({S_1} = 6144\,{m^2}\) công bội \(q = \frac{1}{2}\).

Diện tích tầng 11 là \({S_{11}} = {S_1}{q^{10}} = 6144.{\left( {\frac{1}{2}} \right)^{10}} = 6\,{m^2}\)

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 12 trang 108 SGK Đại số và Giải tích 11

Người ta thiết kế một tháp gồm 11 tầng. Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích mặt đế tháp là \(12 288\) \(m^2\). Tính diện tích mặt trên cùng.

Phương pháp giải – Xem chi tiết

Diện tích các mặt lập thành một cấp số nhân. Sử dụng công thức SHTQ của CSN: \({u_n} = {u_1}.{q^{n – 1}}\).

Lời giải chi tiết

Gọi diện tích đáy tháp là S0; diện tích mặt trên của tầng 1; tầng 2; tầng 3; … lần lượt là \({S_1};{\rm{ }}{S_2};{\rm{ }}{S_3};{\rm{ }} \ldots ;{\rm{ }}{S_{11}}.\)

Ta có:

Diện tích đế tháp: \({S_0} = 12288\,{m^2}\)

Diện tích tầng 1: \({S_1} = \frac{1}{2}{S_0} = \frac{1}{2}.12288\,{m^2} = 6144\,{m^2}\)

Theo giả thiết diện tích của bề mặt trên mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới.

Do đó \((S_n)\) là CSN có số hạng đầu \({S_1} = 6144\,{m^2}\) công bội \(q = \frac{1}{2}\).

Diện tích tầng 11 là \({S_{11}} = {S_1}{q^{10}} = 6144.{\left( {\frac{1}{2}} \right)^{10}} = 6\,{m^2}\)

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close