Lớp 11Tài Nguyên

Bài 2 trang 77 SGK Hình học 11

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M, N, P\) theo thứ tự là trung điểm của các đoạn thẳng \(SA, BC, CD\). Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng \((MNP)\).

Related Articles

Gọi \(O\) là giao điểm hai đường chéo của hình bình hành \(ABCD\), hãy tìm giao điểm của đường thẳng \(SO\) với \(mp (MNP)\).

Bạn đang xem: Bài 2 trang 77 SGK Hình học 11

Phương pháp giải – Xem chi tiết

a) Xác định giao tuyến của mặt phẳng \((MNP)\) với các mặt của hình chóp.

b) Tìm điểm chung của đường thẳng \(SO\) với \(mp (MNP)\).

Lời giải chi tiết

a) Trong mặt phẳng \((ABCD)\) kéo dài \(NP\) cắt đường thẳng \(AB, AD\) lần lượt tại \(E, F\).

Trong mặt phẳng \((SAD)\) gọi \(Q=SD\cap MF\)

Trong mặt phẳng \((SAB)\) gọi \(R=SB\cap ME\)

Do đó 

\( \Rightarrow \left\{ \begin{array}{l}
\left( {MNP} \right) \cap \left( {SAD} \right) = MQ\\
\left( {MNP} \right) \cap \left( {SDC} \right) = QP\\
\left( {MNP} \right) \cap \left( {ABCD} \right) = PN\\
\left( {MNP} \right) \cap \left( {SBC} \right) = NR\\
\left( {MNP} \right) \cap \left( {SAB} \right) = RM
\end{array} \right.\)

Từ đó ta có thiết diện là ngũ giác \(MQPNR\).

b) Trong \((ABCD)\) gọi \(H=AC\cap NP\)

\( \Rightarrow H \in AC \subset \left( {SAC} \right)\)\( \Rightarrow MH \subset \left( {SAC} \right)\)

Trong \(\left( {SAC} \right)\), gọi \(I = SO \cap MH \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in MH \subset \left( {MNP} \right)\end{array} \right.\)

\( \Rightarrow I = SO \cap \left( {MNP} \right)\).

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 2 trang 77 SGK Hình học 11

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình bình hành. Gọi \(M, N, P\) theo thứ tự là trung điểm của các đoạn thẳng \(SA, BC, CD\). Tìm thiết diện của hình chóp khi cắt bởi mặt phẳng \((MNP)\).

Gọi \(O\) là giao điểm hai đường chéo của hình bình hành \(ABCD\), hãy tìm giao điểm của đường thẳng \(SO\) với \(mp (MNP)\).

Phương pháp giải – Xem chi tiết

a) Xác định giao tuyến của mặt phẳng \((MNP)\) với các mặt của hình chóp.

b) Tìm điểm chung của đường thẳng \(SO\) với \(mp (MNP)\).

Lời giải chi tiết

a) Trong mặt phẳng \((ABCD)\) kéo dài \(NP\) cắt đường thẳng \(AB, AD\) lần lượt tại \(E, F\).

Trong mặt phẳng \((SAD)\) gọi \(Q=SD\cap MF\)

Trong mặt phẳng \((SAB)\) gọi \(R=SB\cap ME\)

Do đó 

\( \Rightarrow \left\{ \begin{array}{l}
\left( {MNP} \right) \cap \left( {SAD} \right) = MQ\\
\left( {MNP} \right) \cap \left( {SDC} \right) = QP\\
\left( {MNP} \right) \cap \left( {ABCD} \right) = PN\\
\left( {MNP} \right) \cap \left( {SBC} \right) = NR\\
\left( {MNP} \right) \cap \left( {SAB} \right) = RM
\end{array} \right.\)

Từ đó ta có thiết diện là ngũ giác \(MQPNR\).

b) Trong \((ABCD)\) gọi \(H=AC\cap NP\)

\( \Rightarrow H \in AC \subset \left( {SAC} \right)\)\( \Rightarrow MH \subset \left( {SAC} \right)\)

Trong \(\left( {SAC} \right)\), gọi \(I = SO \cap MH \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in MH \subset \left( {MNP} \right)\end{array} \right.\)

\( \Rightarrow I = SO \cap \left( {MNP} \right)\).

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close