Lớp 11Tài Nguyên

Bài 3 trang 29 SGK Hình học 11

Chứng minh rằng khi thực hiện liên tiếp hai phép vị tự tâm \(O\) sẽ được một phép vị tự tâm \(O\)

Bạn đang xem: Bài 3 trang 29 SGK Hình học 11

Phương pháp giải – Xem chi tiết

+) \({V_{\left( {O,k} \right)}}(M) = M’ \Leftrightarrow \overrightarrow {OM’}  = k\overrightarrow {OM} .\)

Lời giải chi tiết

Với mỗi điểm \(M\), gọi:

\(M’\) = \({V_{(O,k)}}(M)\)

\(M”={V_{(O,p)}}(M’)\)

Khi đó:

\(\overrightarrow{OM’}\) = \(k \overrightarrow{OM}\)

\(\overrightarrow{OM”}\) = \(p\overrightarrow{OM’}\) 

Suy ra: \(\overrightarrow{OM”}\) = \(p\overrightarrow{OM’}\) = \(pk\overrightarrow{OM}\)

Từ đó suy ra \(M”= {V_{(O,pk)}} (M)\).

Vậy thực hiện liên tiếp hai phép vị tự \({V_{(O,k)}}^{}\) và \({V_{(O,p)}}^{}\) sẽ được phép vị tự \({V_{(O,pk)}}^{}\).

 Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 3 trang 29 SGK Hình học 11

Chứng minh rằng khi thực hiện liên tiếp hai phép vị tự tâm \(O\) sẽ được một phép vị tự tâm \(O\)

Phương pháp giải – Xem chi tiết

+) \({V_{\left( {O,k} \right)}}(M) = M’ \Leftrightarrow \overrightarrow {OM’}  = k\overrightarrow {OM} .\)

Lời giải chi tiết

Với mỗi điểm \(M\), gọi:

\(M’\) = \({V_{(O,k)}}(M)\)

\(M”={V_{(O,p)}}(M’)\)

Khi đó:

\(\overrightarrow{OM’}\) = \(k \overrightarrow{OM}\)

\(\overrightarrow{OM”}\) = \(p\overrightarrow{OM’}\) 

Suy ra: \(\overrightarrow{OM”}\) = \(p\overrightarrow{OM’}\) = \(pk\overrightarrow{OM}\)

Từ đó suy ra \(M”= {V_{(O,pk)}} (M)\).

Vậy thực hiện liên tiếp hai phép vị tự \({V_{(O,k)}}^{}\) và \({V_{(O,p)}}^{}\) sẽ được phép vị tự \({V_{(O,pk)}}^{}\).

 Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.