Lớp 11Tài Nguyên

Bài 3 trang 77 SGK Hình học 11

Cho hình chóp đỉnh \(S\) có đáy là hình thang \(ABCD\) với \(AB\) là đáy lớn. Gọi \(M, N\) theo thứ tự là trung điểm của các cạnh \(SB, SC\)

a) Tìm giao tuyến của hai mặt phẳng \((SAD)\) và \((SBC)\)

Bạn đang xem: Bài 3 trang 77 SGK Hình học 11

b) Tìm giao điểm của đường thẳng \(SD\) với mặt phẳng \((AMN)\)

c) Tìm thiết dện của hình chóp \(S.ABCD\) cắt bởi mặt phẳng \((AMN)\)

Phương pháp giải – Xem chi tiết

a) Tìm hai điểm chung của hai mặt phẳng \((SAD)\) và \((SBC)\).

b) Tìm điểm chung của đường thẳng \(SD\) với mặt phẳng \((AMN)\) theo các bước:

– Tìm một mp chứa \(SD\) mà cắt được với \((AMN)\).

– Tìm giao tuyến của mp vừa tìm với \((AMN)\).

– Tìm giao điểm của giao tuyến đó với \(SD\).

c) Tìm giao tuyến của mặt phẳng \((AMN)\) với tất cả các mặt của hình chóp.

Lời giải chi tiết

a) Trong \((ABCD)\) gọi \(E=AD\cap BC\)

\( \Rightarrow \left\{ \begin{array}{l}E \in AD \subset \left( {SAD} \right)\\E \in BC \subset \left( {SBC} \right)\end{array} \right.\) \( \Rightarrow E \in \left( {SAD} \right) \cap \left( {SBC} \right)\).

Mà \(S \in \left( {SAD} \right) \cap \left( {SBC} \right)\) \( \Rightarrow SE = \left( {SAD} \right) \cap \left( {SBC} \right)\).

b) + Ta có: \(SD \subset \left( {SAD} \right)\)

+ Tìm giao tuyến của \(SD\) với \((AMN)\).

Trong \((SBE)\): gọi \(F=MN ∩ SE\) 

\( \Rightarrow \left\{ \begin{array}{l}
F \in MN \subset \left( {AMN} \right)\\
F \in SE \subset \left( {SAD} \right)
\end{array} \right. \) \(\Rightarrow F \in \left( {AMN} \right) \cap \left( {SAD} \right)\)

Mà \(A \in \left( {AMN} \right) \cap \left( {SAD} \right)\) nên \(AF = \left( {AMN} \right) \cap \left( {SAD} \right)\)

+ Tìm giao điểm của \(AF\) với \(SD\).

Trong \((SAE)\): gọi \(P= AF ∩ SD\) 

\( \Rightarrow P \in AF \subset \left( {AMN} \right)\).

Mà \(P \in SD\) nên \(P=SD\cap (AMN)\)

c) Ta có: \(\left( {AMN} \right) \cap \left( {SAD} \right) = AP\)

+) \(\left( {AMN} \right) \cap \left( {SCD} \right) = PN\)

+) \(\left( {AMN} \right) \cap \left( {SBC} \right) = MN\)

+) \(\left( {AMN} \right) \cap \left( {SAB} \right) = AM\)

Vậy thiết diện của hình chóp cắt bởi mặt phẳng \((AMN)\) là tứ giác \(AMNP\).

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 3 trang 77 SGK Hình học 11

Cho hình chóp đỉnh \(S\) có đáy là hình thang \(ABCD\) với \(AB\) là đáy lớn. Gọi \(M, N\) theo thứ tự là trung điểm của các cạnh \(SB, SC\)

a) Tìm giao tuyến của hai mặt phẳng \((SAD)\) và \((SBC)\)

b) Tìm giao điểm của đường thẳng \(SD\) với mặt phẳng \((AMN)\)

c) Tìm thiết dện của hình chóp \(S.ABCD\) cắt bởi mặt phẳng \((AMN)\)

Phương pháp giải – Xem chi tiết

a) Tìm hai điểm chung của hai mặt phẳng \((SAD)\) và \((SBC)\).

b) Tìm điểm chung của đường thẳng \(SD\) với mặt phẳng \((AMN)\) theo các bước:

– Tìm một mp chứa \(SD\) mà cắt được với \((AMN)\).

– Tìm giao tuyến của mp vừa tìm với \((AMN)\).

– Tìm giao điểm của giao tuyến đó với \(SD\).

c) Tìm giao tuyến của mặt phẳng \((AMN)\) với tất cả các mặt của hình chóp.

Lời giải chi tiết

a) Trong \((ABCD)\) gọi \(E=AD\cap BC\)

\( \Rightarrow \left\{ \begin{array}{l}E \in AD \subset \left( {SAD} \right)\\E \in BC \subset \left( {SBC} \right)\end{array} \right.\) \( \Rightarrow E \in \left( {SAD} \right) \cap \left( {SBC} \right)\).

Mà \(S \in \left( {SAD} \right) \cap \left( {SBC} \right)\) \( \Rightarrow SE = \left( {SAD} \right) \cap \left( {SBC} \right)\).

b) + Ta có: \(SD \subset \left( {SAD} \right)\)

+ Tìm giao tuyến của \(SD\) với \((AMN)\).

Trong \((SBE)\): gọi \(F=MN ∩ SE\) 

\( \Rightarrow \left\{ \begin{array}{l}
F \in MN \subset \left( {AMN} \right)\\
F \in SE \subset \left( {SAD} \right)
\end{array} \right. \) \(\Rightarrow F \in \left( {AMN} \right) \cap \left( {SAD} \right)\)

Mà \(A \in \left( {AMN} \right) \cap \left( {SAD} \right)\) nên \(AF = \left( {AMN} \right) \cap \left( {SAD} \right)\)

+ Tìm giao điểm của \(AF\) với \(SD\).

Trong \((SAE)\): gọi \(P= AF ∩ SD\) 

\( \Rightarrow P \in AF \subset \left( {AMN} \right)\).

Mà \(P \in SD\) nên \(P=SD\cap (AMN)\)

c) Ta có: \(\left( {AMN} \right) \cap \left( {SAD} \right) = AP\)

+) \(\left( {AMN} \right) \cap \left( {SCD} \right) = PN\)

+) \(\left( {AMN} \right) \cap \left( {SBC} \right) = MN\)

+) \(\left( {AMN} \right) \cap \left( {SAB} \right) = AM\)

Vậy thiết diện của hình chóp cắt bởi mặt phẳng \((AMN)\) là tứ giác \(AMNP\).

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close