Lớp 11Tài Nguyên

Bài 4 trang 114 SGK Hình học 11

Cho hai mặt phẳng \((\alpha)\), \((\beta)\) cắt nhau và một điểm \(M\) không thuộc \((\alpha)\) và không thuộc \((\beta)\). Chứng minh rằng qua điểm \(M\) có một và chỉ một mặt phẳng \((P)\) vuông góc với \((\alpha)\) và \((\beta)\). Nếu \((\alpha)\) song song với \((\beta)\) thì kết quả trên sẽ thay đổi như thế nào?

Bạn đang xem: Bài 4 trang 114 SGK Hình học 11

Phương pháp giải – Xem chi tiết

Sử dụng kết quả của định lí: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba đó.

Lời giải chi tiết

Gọi \(a\) là giao tuyến của hai mặt phẳng \((\alpha)\) và \((\beta)\).

Ta có: \(\left\{ \begin{array}{l}\left( P \right) \bot \left( \alpha \right)\\\left( P \right) \bot \left( \beta \right)\\\left( \alpha \right) \cap \left( \beta \right) = a\end{array} \right. \Rightarrow a \bot \left( P \right)\)

Do đó mặt phẳng \((P)\) đi qua \(M\) và vuông góc với đường thẳng \(a\), do đó mặt phẳng \((P)\) là duy nhất.

Nếu  \((\alpha)//(\beta)\) gọi \(d\) là đường thẳng đi qua \(M\) và vuông góc với \((\alpha)\) khi đó ta có \(d\bot (\beta)\).

Như vậy mọi mặt phẳng chứa \(d\) đều vuông góc với  \((\alpha)\) và \((\beta)\).

Do đó khi  \((\alpha)//(\beta)\) thì có vô số mặt phẳng \((P)\) đi qua \(M\) và vuông góc với  \((\alpha)\) và \((\beta)\).

 Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 4 trang 114 SGK Hình học 11

Cho hai mặt phẳng \((\alpha)\), \((\beta)\) cắt nhau và một điểm \(M\) không thuộc \((\alpha)\) và không thuộc \((\beta)\). Chứng minh rằng qua điểm \(M\) có một và chỉ một mặt phẳng \((P)\) vuông góc với \((\alpha)\) và \((\beta)\). Nếu \((\alpha)\) song song với \((\beta)\) thì kết quả trên sẽ thay đổi như thế nào?

Phương pháp giải – Xem chi tiết

Sử dụng kết quả của định lí: Nếu hai mặt phẳng cắt nhau và cùng vuông góc với mặt phẳng thứ ba thì giao tuyến của chúng vuông góc với mặt phẳng thứ ba đó.

Lời giải chi tiết

Gọi \(a\) là giao tuyến của hai mặt phẳng \((\alpha)\) và \((\beta)\).

Ta có: \(\left\{ \begin{array}{l}\left( P \right) \bot \left( \alpha \right)\\\left( P \right) \bot \left( \beta \right)\\\left( \alpha \right) \cap \left( \beta \right) = a\end{array} \right. \Rightarrow a \bot \left( P \right)\)

Do đó mặt phẳng \((P)\) đi qua \(M\) và vuông góc với đường thẳng \(a\), do đó mặt phẳng \((P)\) là duy nhất.

Nếu  \((\alpha)//(\beta)\) gọi \(d\) là đường thẳng đi qua \(M\) và vuông góc với \((\alpha)\) khi đó ta có \(d\bot (\beta)\).

Như vậy mọi mặt phẳng chứa \(d\) đều vuông góc với  \((\alpha)\) và \((\beta)\).

Do đó khi  \((\alpha)//(\beta)\) thì có vô số mặt phẳng \((P)\) đi qua \(M\) và vuông góc với  \((\alpha)\) và \((\beta)\).

 Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close