Bài 4 trang 126 SGK Hình học 11
Cho hình lăng trụ tứ giác \(ABCD.A’B’C’D’\) có \(E, F, M\) và \(N\) lần lượt là trung điểm của \(AC, BD, AC’\) và \(BD’\). Chứng minh \(MN = EF\).
Bạn đang xem: Bài 4 trang 126 SGK Hình học 11
Phương pháp giải – Xem chi tiết
Chứng minh \(MNFE\) là hình bình hành.
Lời giải chi tiết
Vì \(M\) là trung điểm của \(A’C\) và \(E\) là trung điểm của \(AC\) nên \(ME\) là đường trung bình của \(\Delta ACC’ \Rightarrow \overrightarrow {EM} = {1 \over 2}\overrightarrow {CC’}\,\,\,\,\, (1)\)
Tương tự ta có \(FN\) là đường trung bình của tam giác \(BDB’\): \(\Rightarrow \overrightarrow {FN} = {1 \over 2}\overrightarrow {BB’} \,\,\,\,\,(2)\)
Ta lại có: \(\overrightarrow {AA’} = \overrightarrow {BB’}\,\,\,\,\,\, (3)\)
Từ (1), (2), (3) ⇒ \(\overrightarrow {EM} = \overrightarrow {FN}\) hay tứ giác \(MNFE\) là hình bình hành, do đó \(MN = EF\).
Phòng GDĐT Thoại Sơn
Đăng bởi: Phòng GDDT Thoại Sơn
Chuyên mục: Tài Nguyên Học Tập
Xem thêm Bài 4 trang 126 SGK Hình học 11
Cho hình lăng trụ tứ giác \(ABCD.A’B’C’D’\) có \(E, F, M\) và \(N\) lần lượt là trung điểm của \(AC, BD, AC’\) và \(BD’\). Chứng minh \(MN = EF\).
Phương pháp giải – Xem chi tiết
Chứng minh \(MNFE\) là hình bình hành.
Lời giải chi tiết
Vì \(M\) là trung điểm của \(A’C\) và \(E\) là trung điểm của \(AC\) nên \(ME\) là đường trung bình của \(\Delta ACC’ \Rightarrow \overrightarrow {EM} = {1 \over 2}\overrightarrow {CC’}\,\,\,\,\, (1)\)
Tương tự ta có \(FN\) là đường trung bình của tam giác \(BDB’\): \(\Rightarrow \overrightarrow {FN} = {1 \over 2}\overrightarrow {BB’} \,\,\,\,\,(2)\)
Ta lại có: \(\overrightarrow {AA’} = \overrightarrow {BB’}\,\,\,\,\,\, (3)\)
Từ (1), (2), (3) ⇒ \(\overrightarrow {EM} = \overrightarrow {FN}\) hay tứ giác \(MNFE\) là hình bình hành, do đó \(MN = EF\).
Phòng GDĐT Thoại Sơn