Lớp 11Tài Nguyên

Bài 4 trang 33 SGK Hình học 11

Cho tam giác \(ABC\) vuông tại \(A, AH\) là đường cao kẻ từ \(A\). Tìm một phép đồng dạng biến tam giác \(HBA\) thành tam giác \(ABC\).

Related Articles

Bạn đang xem: Bài 4 trang 33 SGK Hình học 11

Phương pháp giải – Xem chi tiết

Thực hiện liên tiếp hai phép biến hình:

– Phép đối xứng qua đường thẳng \(d,\) với \(d\) là phân giác của góc \(B.\)

– Phép vị tự tâm \(B,\) tỉ số \(AC/AH.\)

Lời giải chi tiết

Gọi \(d\) là đường phân giác của \( \widehat{B}\).

Gọi \(A’ = {D_d}\left( H \right),C’ = {D_d}\left( A \right)\).

Dễ thấy \(A’\in AB, C’\in BC\).

Ta có \({D_{d}}\) biến \(∆HBA\) thành \(∆A’BC’\).

Suy ra \(∆HBA\)=\(∆A’BC’\) nên góc \(A’=H=90^0\)

\(\Rightarrow C’A’//CA\)

Theo định lý Ta-let có \(\frac{{BA}}{{BA’}} = \frac{{BC}}{{BC’}} = \frac{{AC}}{{A’C’}} = \frac{{AC}}{{AH}}=k\)

\(\Rightarrow \overrightarrow {BA}=k\overrightarrow {BA’}\) \(\Rightarrow {V_{\left( {B;k} \right)}}\left( {A’} \right) = A\)

\(\overrightarrow {BC}=k\overrightarrow {BC’}\)\(\Rightarrow  {V_{\left( {B;k} \right)}}\left( {C’} \right) = C\) 

Mà \({V_{\left( {B;k} \right)}}\left( B \right) = B\) nên \({V_{\left( {B;k} \right)}}\left( {\Delta A’BC’} \right) = \Delta ABC\).

Do đó phép đồng dạng có được bằng cách thực hiện liên tiếp \({D_{d}}\) và \({V_{(B,k)}}\) sẽ biến \( \bigtriangleup\)\(HBA\) thành \( \bigtriangleup\)\(ABC\)

 Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 4 trang 33 SGK Hình học 11

Cho tam giác \(ABC\) vuông tại \(A, AH\) là đường cao kẻ từ \(A\). Tìm một phép đồng dạng biến tam giác \(HBA\) thành tam giác \(ABC\).

Phương pháp giải – Xem chi tiết

Thực hiện liên tiếp hai phép biến hình:

– Phép đối xứng qua đường thẳng \(d,\) với \(d\) là phân giác của góc \(B.\)

– Phép vị tự tâm \(B,\) tỉ số \(AC/AH.\)

Lời giải chi tiết

Gọi \(d\) là đường phân giác của \( \widehat{B}\).

Gọi \(A’ = {D_d}\left( H \right),C’ = {D_d}\left( A \right)\).

Dễ thấy \(A’\in AB, C’\in BC\).

Ta có \({D_{d}}\) biến \(∆HBA\) thành \(∆A’BC’\).

Suy ra \(∆HBA\)=\(∆A’BC’\) nên góc \(A’=H=90^0\)

\(\Rightarrow C’A’//CA\)

Theo định lý Ta-let có \(\frac{{BA}}{{BA’}} = \frac{{BC}}{{BC’}} = \frac{{AC}}{{A’C’}} = \frac{{AC}}{{AH}}=k\)

\(\Rightarrow \overrightarrow {BA}=k\overrightarrow {BA’}\) \(\Rightarrow {V_{\left( {B;k} \right)}}\left( {A’} \right) = A\)

\(\overrightarrow {BC}=k\overrightarrow {BC’}\)\(\Rightarrow  {V_{\left( {B;k} \right)}}\left( {C’} \right) = C\) 

Mà \({V_{\left( {B;k} \right)}}\left( B \right) = B\) nên \({V_{\left( {B;k} \right)}}\left( {\Delta A’BC’} \right) = \Delta ABC\).

Do đó phép đồng dạng có được bằng cách thực hiện liên tiếp \({D_{d}}\) và \({V_{(B,k)}}\) sẽ biến \( \bigtriangleup\)\(HBA\) thành \( \bigtriangleup\)\(ABC\)

 Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close