Lớp 11Tài Nguyên

Bài 7 trang 114 SGK Hình học 11

Cho hình hộp chữ nhật \(ABCD.A’B’C’D’\) có \(AB = a, BC = b, CC’ = c\).

Related Articles

a) Chứng minh rằng mặt phẳng \((ADC’B’)\) vuông góc với mặt phẳng \((ABB’A’)\).

Bạn đang xem: Bài 7 trang 114 SGK Hình học 11

b) Tính độ dài đường chéo \(AC’\) theo \(a, b, c\).

Phương pháp giải – Xem chi tiết

a) Chứng minh \(DA \bot \left( {ABB’A’} \right)\)

b) Sử dụng định lí Pytago.

Lời giải chi tiết

a) Ta có:

\(\left\{ \begin{array}{l}
DA \bot AA’\\
DA \bot AB
\end{array} \right. \Rightarrow DA \bot \left( {ABB’A’} \right)\)

Mà \(DA ⊂ (ADC’B’)\)

\(\Rightarrow (ADC’B’) \bot(ABB’A’)\).

b)

\(\left\{ \begin{array}{l}
C’C \bot CD\\
C’C \bot CB
\end{array} \right. \Rightarrow C’C \bot \left( {ABCD} \right)\)

Mà \(CA \subset \left( {ABCD} \right) \Rightarrow C’C \bot CA\) hay tam giác \(ACC’\) vuông tại \(C\).

Xét tam giác vuông \(ACC’\)

\(AC’ = \sqrt {A{C^2} + CC{‘^2}}  \) \(= \sqrt {A{D^2} + D{C^2} + CC{‘^2}}\)

\(=\sqrt{a^{2}+b^{2}+c^{2}}.\)

Ghi nhớ: Hai mặt phẳng vuông góc với nhau khi mặt này chứa một đường thẳng vuông góc với mặt kia.

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Bài 7 trang 114 SGK Hình học 11

Cho hình hộp chữ nhật \(ABCD.A’B’C’D’\) có \(AB = a, BC = b, CC’ = c\).

a) Chứng minh rằng mặt phẳng \((ADC’B’)\) vuông góc với mặt phẳng \((ABB’A’)\).

b) Tính độ dài đường chéo \(AC’\) theo \(a, b, c\).

Phương pháp giải – Xem chi tiết

a) Chứng minh \(DA \bot \left( {ABB’A’} \right)\)

b) Sử dụng định lí Pytago.

Lời giải chi tiết

a) Ta có:

\(\left\{ \begin{array}{l}
DA \bot AA’\\
DA \bot AB
\end{array} \right. \Rightarrow DA \bot \left( {ABB’A’} \right)\)

Mà \(DA ⊂ (ADC’B’)\)

\(\Rightarrow (ADC’B’) \bot(ABB’A’)\).

b)

\(\left\{ \begin{array}{l}
C’C \bot CD\\
C’C \bot CB
\end{array} \right. \Rightarrow C’C \bot \left( {ABCD} \right)\)

Mà \(CA \subset \left( {ABCD} \right) \Rightarrow C’C \bot CA\) hay tam giác \(ACC’\) vuông tại \(C\).

Xét tam giác vuông \(ACC’\)

\(AC’ = \sqrt {A{C^2} + CC{‘^2}}  \) \(= \sqrt {A{D^2} + D{C^2} + CC{‘^2}}\)

\(=\sqrt{a^{2}+b^{2}+c^{2}}.\)

Ghi nhớ: Hai mặt phẳng vuông góc với nhau khi mặt này chứa một đường thẳng vuông góc với mặt kia.

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close