Lớp 12Tài Nguyên

Các dạng toán về điểm biểu diễn số phức

Các dạng toán về điểm biểu diễn số phức


Related Articles

1. Kiến thức cần nhớ

Điểm \(M\left( {a;b} \right)\) biểu diễn số phức \(z = a + bi\).

2. Một số dạng toán thường gặp

Dạng 1: Tìm điểm biểu diễn số phức thỏa mãn điều kiện cho trước.

Bạn đang xem: Các dạng toán về điểm biểu diễn số phức

Phương pháp:

Cách 1: Tính số phức \(z\) dựa vào các phép đổi thông thường.

Cách 2:

– Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\) có điểm biểu diễn là \(M\left( {x;y} \right)\).

– Bước 2: Thay \(z = x + yi\) và điều kiện đề bài tìm \(x,y \Rightarrow M\).

Ví dụ: Cho số phức \(z\) thỏa mãn \(w + 2z = i\) biết \(w = 2 – i\). Tìm tọa độ điểm biểu diễn số phức \(z\).

Giải:

Gọi \(z = a + bi\left( {a,b \in R} \right)\) biểu diễn số phức \(z\), ta có:

\(2 – i + 2\left( {a + bi} \right) = i \Leftrightarrow \left( {2 + 2a} \right) + \left( {2b – 2} \right) = 0 \Leftrightarrow \left\{ \begin{array}{l}2 + 2a = 0\\2b – 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  – 1\\b = 1\end{array} \right.\)

Vậy \(M\left( { – 1;1} \right)\).

Dạng 2: Tìm tập hợp điểm biểu diễn số phức.

Phương pháp:

– Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\) có điểm biểu diễn là \(M\left( {x;y} \right)\).

– Bước 2: Thay \(z = x + yi\) vào điều kiện đã cho dẫn đến phương trình liên hệ giữa \(x,y\).

– Bước 3: Kết luận:

+) Phương trình đường thẳng: \(Ax + By + C = 0\)

+) Phương trình đường tròn: \({x^2} + {y^2} – 2ax – 2by + c = 0\)

+) Phương trình parabol: \(y = a{x^2} + bx + c\) hoặc \(x = a{y^2} + by + c\)

+) Phương trình elip: \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\)

Ví dụ: Tìm tập hợp các điểm $M$ biểu diễn số phức \(z\) thỏa mãn:\(|z – (3 – 4i)| = 2\).

A. Đường tròn tâm $I\left( {3, – 4} \right)$ và bán kính $R = 2$.

B. Đường tròn tâm $I\left( { – 3,4} \right)$ và bán kính $R = 2$.

C. Đường tròn tâm $I\left( {3, – 4} \right)$ và bán kính $R = 1$.

D. Đường tròn tâm $I\left( { – 3,4} \right)$ và bán kính $R = 1$.

Giải:

Giả sử ta có số phức $z = a + bi$ .

Thay vào \(|z – (3 – 4i)| = 2\) có:

\(|a + bi – (3 – 4i)| = 2 \Leftrightarrow |(a – 3) + (b + 4)i| = 2 \)

$\Leftrightarrow \sqrt {{{(a – 3)}^2} + {{(b + 4)}^2}}  = 2 \Leftrightarrow {(a – 3)^2} + {(b + 4)^2} = 4$.

Chọn đáp án A

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Các dạng toán về điểm biểu diễn số phức

Các dạng toán về điểm biểu diễn số phức


1. Kiến thức cần nhớ

Điểm \(M\left( {a;b} \right)\) biểu diễn số phức \(z = a + bi\).

2. Một số dạng toán thường gặp

Dạng 1: Tìm điểm biểu diễn số phức thỏa mãn điều kiện cho trước.

Phương pháp:

Cách 1: Tính số phức \(z\) dựa vào các phép đổi thông thường.

Cách 2:

– Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\) có điểm biểu diễn là \(M\left( {x;y} \right)\).

– Bước 2: Thay \(z = x + yi\) và điều kiện đề bài tìm \(x,y \Rightarrow M\).

Ví dụ: Cho số phức \(z\) thỏa mãn \(w + 2z = i\) biết \(w = 2 – i\). Tìm tọa độ điểm biểu diễn số phức \(z\).

Giải:

Gọi \(z = a + bi\left( {a,b \in R} \right)\) biểu diễn số phức \(z\), ta có:

\(2 – i + 2\left( {a + bi} \right) = i \Leftrightarrow \left( {2 + 2a} \right) + \left( {2b – 2} \right) = 0 \Leftrightarrow \left\{ \begin{array}{l}2 + 2a = 0\\2b – 2 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  – 1\\b = 1\end{array} \right.\)

Vậy \(M\left( { – 1;1} \right)\).

Dạng 2: Tìm tập hợp điểm biểu diễn số phức.

Phương pháp:

– Bước 1: Gọi số phức \(z = x + yi\left( {x,y \in R} \right)\) có điểm biểu diễn là \(M\left( {x;y} \right)\).

– Bước 2: Thay \(z = x + yi\) vào điều kiện đã cho dẫn đến phương trình liên hệ giữa \(x,y\).

– Bước 3: Kết luận:

+) Phương trình đường thẳng: \(Ax + By + C = 0\)

+) Phương trình đường tròn: \({x^2} + {y^2} – 2ax – 2by + c = 0\)

+) Phương trình parabol: \(y = a{x^2} + bx + c\) hoặc \(x = a{y^2} + by + c\)

+) Phương trình elip: \(\dfrac{{{x^2}}}{{{a^2}}} + \dfrac{{{y^2}}}{{{b^2}}} = 1\)

Ví dụ: Tìm tập hợp các điểm $M$ biểu diễn số phức \(z\) thỏa mãn:\(|z – (3 – 4i)| = 2\).

A. Đường tròn tâm $I\left( {3, – 4} \right)$ và bán kính $R = 2$.

B. Đường tròn tâm $I\left( { – 3,4} \right)$ và bán kính $R = 2$.

C. Đường tròn tâm $I\left( {3, – 4} \right)$ và bán kính $R = 1$.

D. Đường tròn tâm $I\left( { – 3,4} \right)$ và bán kính $R = 1$.

Giải:

Giả sử ta có số phức $z = a + bi$ .

Thay vào \(|z – (3 – 4i)| = 2\) có:

\(|a + bi – (3 – 4i)| = 2 \Leftrightarrow |(a – 3) + (b + 4)i| = 2 \)

$\Leftrightarrow \sqrt {{{(a – 3)}^2} + {{(b + 4)}^2}}  = 2 \Leftrightarrow {(a – 3)^2} + {(b + 4)^2} = 4$.

Chọn đáp án A

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close