Lớp 12Tài Nguyên

Giải bài 1 trang 45 SGK Giải tích 12

Phát biểu các điều kiện để hàm số đồng biến, nghịch biến. Tìm các khoảng đơn điệu của các hàm số:


Phát biểu các điều kiện để hàm số đồng biến, nghịch biến. Tìm các khoảng đơn điệu của các hàm số:

LG a

Bạn đang xem: Giải bài 1 trang 45 SGK Giải tích 12

\(\displaystyle y =  – {x^3} + 2{x^2} – x – 7\)

Phương pháp giải:

B1: Tính đạo hàm \(y’\)

B2: Tìm nghiệm của phương trình \(y’=0 \), các giá trị của x mà tại đó hàm số k xác định

B3: Kết luận khoảng đồng biến, nghịch biến

Biết rằng

a) Nếu \(f'(x)> 0\) với mọi \(x \in(a; \, b)\) thì hàm số \(f(x)\) đồng biến trên khoảng đó.

b) Nếu \(f'(x)< 0\) với mọi \(x \in(a; \, b)\) thì hàm số \(f(x)\) nghịch biến trên khoảng đó.

Lời giải chi tiết:

* Xét hàm số: \(\displaystyle y =  – {x^3} +2{x^2} – x – 7\)

Tập xác định: \(\displaystyle D =\mathbb R\)

Ta có: \(\displaystyle y’ =  – 3{x^2} + 4x – 1 \Rightarrow y’ = 0\)

\(\displaystyle \begin{array}{l}
\Leftrightarrow – 3{x^2} + 4x – 1 = 0\\ \Leftrightarrow \left( {3x – 1} \right)\left( {x – 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
3x – 1 = 0\\
x – 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{1}{3}\\
x = 1
\end{array} \right..
\end{array}\)

Hàm số đồng biến \(\displaystyle \Leftrightarrow y’ > 0\) \( \Leftrightarrow  – 3{x^2} + 4x – 1 > 0\)

\(\displaystyle \begin{array}{l}
\Leftrightarrow 3{x^2} – 4x + 1 < 0 \\\Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) < 0\\
\Leftrightarrow \dfrac{1}{3} < x < 1.
\end{array}\)

Hàm số nghịch biến \(\displaystyle \Leftrightarrow y’ < 0 \Leftrightarrow  - 3{x^2} + 4x - 1 < 0\)

\(\displaystyle \begin{array}{l}
\Leftrightarrow 3{x^2} – 4x + 1 > 0\\ \Leftrightarrow \left( {3x – 1} \right)\left( {x – 1} \right) > 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < \dfrac{1}{3}
\end{array} \right..
\end{array}\)

Vậy hàm số đồng biến trong \(\displaystyle ({1 \over 3},1)\) và nghịch biến trong \(\displaystyle ( – \infty ,{1 \over 3}) \) và \(\displaystyle (1, + \infty ).\)

LG b

\(\displaystyle y = {{x – 5} \over {1 – x}}\)

Lời giải chi tiết:

Xét hàm số:  \(\displaystyle y = {{x – 5} \over {1 – x}} = \dfrac{x-5}{-x+1}\)

Tập xác định: \(\displaystyle D = \mathbb R \backslash {\rm{\{ }}1\} \)

Ta có: \(\displaystyle y’ = \dfrac{1.1-5.1}{(1-x)^2}= {{ – 4} \over {{{(1 – x)}^2}}} < 0,\forall x \in D\)

Vậy hàm số nghịch biến trong từng khoảng \(\displaystyle (-∞,1)\) và \(\displaystyle (1, +∞)\).

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Giải bài 1 trang 45 SGK Giải tích 12

Phát biểu các điều kiện để hàm số đồng biến, nghịch biến. Tìm các khoảng đơn điệu của các hàm số:


Phát biểu các điều kiện để hàm số đồng biến, nghịch biến. Tìm các khoảng đơn điệu của các hàm số:

LG a

\(\displaystyle y =  – {x^3} + 2{x^2} – x – 7\)

Phương pháp giải:

B1: Tính đạo hàm \(y’\)

B2: Tìm nghiệm của phương trình \(y’=0 \), các giá trị của x mà tại đó hàm số k xác định

B3: Kết luận khoảng đồng biến, nghịch biến

Biết rằng

a) Nếu \(f'(x)> 0\) với mọi \(x \in(a; \, b)\) thì hàm số \(f(x)\) đồng biến trên khoảng đó.

b) Nếu \(f'(x)< 0\) với mọi \(x \in(a; \, b)\) thì hàm số \(f(x)\) nghịch biến trên khoảng đó.

Lời giải chi tiết:

* Xét hàm số: \(\displaystyle y =  – {x^3} +2{x^2} – x – 7\)

Tập xác định: \(\displaystyle D =\mathbb R\)

Ta có: \(\displaystyle y’ =  – 3{x^2} + 4x – 1 \Rightarrow y’ = 0\)

\(\displaystyle \begin{array}{l}
\Leftrightarrow – 3{x^2} + 4x – 1 = 0\\ \Leftrightarrow \left( {3x – 1} \right)\left( {x – 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
3x – 1 = 0\\
x – 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{1}{3}\\
x = 1
\end{array} \right..
\end{array}\)

Hàm số đồng biến \(\displaystyle \Leftrightarrow y’ > 0\) \( \Leftrightarrow  – 3{x^2} + 4x – 1 > 0\)

\(\displaystyle \begin{array}{l}
\Leftrightarrow 3{x^2} – 4x + 1 < 0 \\\Leftrightarrow \left( {3x - 1} \right)\left( {x - 1} \right) < 0\\
\Leftrightarrow \dfrac{1}{3} < x < 1.
\end{array}\)

Hàm số nghịch biến \(\displaystyle \Leftrightarrow y’ < 0 \Leftrightarrow  - 3{x^2} + 4x - 1 < 0\)

\(\displaystyle \begin{array}{l}
\Leftrightarrow 3{x^2} – 4x + 1 > 0\\ \Leftrightarrow \left( {3x – 1} \right)\left( {x – 1} \right) > 0\\
\Leftrightarrow \left[ \begin{array}{l}
x > 1\\
x < \dfrac{1}{3}
\end{array} \right..
\end{array}\)

Vậy hàm số đồng biến trong \(\displaystyle ({1 \over 3},1)\) và nghịch biến trong \(\displaystyle ( – \infty ,{1 \over 3}) \) và \(\displaystyle (1, + \infty ).\)

LG b

\(\displaystyle y = {{x – 5} \over {1 – x}}\)

Lời giải chi tiết:

Xét hàm số:  \(\displaystyle y = {{x – 5} \over {1 – x}} = \dfrac{x-5}{-x+1}\)

Tập xác định: \(\displaystyle D = \mathbb R \backslash {\rm{\{ }}1\} \)

Ta có: \(\displaystyle y’ = \dfrac{1.1-5.1}{(1-x)^2}= {{ – 4} \over {{{(1 – x)}^2}}} < 0,\forall x \in D\)

Vậy hàm số nghịch biến trong từng khoảng \(\displaystyle (-∞,1)\) và \(\displaystyle (1, +∞)\).

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close