Giải bài 2 trang 24 SGK Giải tích 12
Trong số các hình chữ nhật cùng có chu vi \(16 cm\), hãy tìm hình chữ nhật có diện tích lớn nhất.
Bạn đang xem: Giải bài 2 trang 24 SGK Giải tích 12
Phương pháp giải – Xem chi tiết
Cho hình chữ nhật có chiều dài là x và chiều rộng là y.
+) Chu vi hình chữ nhật: \(P=2\left( x+y \right).\)
+) Diện tích hình chữ nhật: \(S=xy.\)
Lập hàm số diện tích \(S\left( x \right)\), xét hàm suy ra GTLN.
Lời giải chi tiết
Gọi chiều rộng và chiều dài của hình chữ nhật lần lượt là \(x;\ y\ \left( cm \right),\left( 0< x; y < 8 \right).\)
Chu vi của hình chữ nhật là \(16cm.\)
Khi đó: \(2\left( x+y \right)=16\Leftrightarrow x+y=8\) \(\Leftrightarrow y=8-x.\)
\(\Rightarrow \) Diện tích: \(S=xy=x\left( 8-x \right)=8x-{{x}^{2}}.\)
Xét hàm số: \(S\left( x \right)=8x-{{x}^{2}}\) trên \(\left( 0;8 \right)\) ta có:
\(S’\left( x \right)=8-2x\) \(\Rightarrow S’\left( x \right)=0\Leftrightarrow x=4.\)
Ta có: \(S\left( 0 \right)=0;S\left( 4 \right)=16;S\left( 8 \right)=0.\)
\(\Rightarrow \mathop {\max }\limits_{\left( {0;8} \right)} S\left( x \right) = 16\) khi \(x=4\).
\(\Rightarrow y=8-x=4\ \ \left( tm \right).\)
Vậy hình chữ nhật có diện tích lớn nhất là hình vuông có cạnh là \(4cm.\)
Cách khác:
Ta có:
\(S\left( x \right) = 8x – {x^2}\) \( = 16 – \left( {{x^2} – 8x + 16} \right)\) \( = 16 – {\left( {x – 4} \right)^2} \le 16 \) \(\Rightarrow \mathop {\max }\limits_{\left( {0;8} \right)} S\left( x \right) = 16\,khi\,x = 4\)
Phòng GDĐT Thoại Sơn
Đăng bởi: Phòng GDDT Thoại Sơn
Chuyên mục: Tài Nguyên Học Tập
Xem thêm Giải bài 2 trang 24 SGK Giải tích 12
Trong số các hình chữ nhật cùng có chu vi \(16 cm\), hãy tìm hình chữ nhật có diện tích lớn nhất.
Phương pháp giải – Xem chi tiết
Cho hình chữ nhật có chiều dài là x và chiều rộng là y.
+) Chu vi hình chữ nhật: \(P=2\left( x+y \right).\)
+) Diện tích hình chữ nhật: \(S=xy.\)
Lập hàm số diện tích \(S\left( x \right)\), xét hàm suy ra GTLN.
Lời giải chi tiết
Gọi chiều rộng và chiều dài của hình chữ nhật lần lượt là \(x;\ y\ \left( cm \right),\left( 0< x; y < 8 \right).\)
Chu vi của hình chữ nhật là \(16cm.\)
Khi đó: \(2\left( x+y \right)=16\Leftrightarrow x+y=8\) \(\Leftrightarrow y=8-x.\)
\(\Rightarrow \) Diện tích: \(S=xy=x\left( 8-x \right)=8x-{{x}^{2}}.\)
Xét hàm số: \(S\left( x \right)=8x-{{x}^{2}}\) trên \(\left( 0;8 \right)\) ta có:
\(S’\left( x \right)=8-2x\) \(\Rightarrow S’\left( x \right)=0\Leftrightarrow x=4.\)
Ta có: \(S\left( 0 \right)=0;S\left( 4 \right)=16;S\left( 8 \right)=0.\)
\(\Rightarrow \mathop {\max }\limits_{\left( {0;8} \right)} S\left( x \right) = 16\) khi \(x=4\).
\(\Rightarrow y=8-x=4\ \ \left( tm \right).\)
Vậy hình chữ nhật có diện tích lớn nhất là hình vuông có cạnh là \(4cm.\)
Cách khác:
Ta có:
\(S\left( x \right) = 8x – {x^2}\) \( = 16 – \left( {{x^2} – 8x + 16} \right)\) \( = 16 – {\left( {x – 4} \right)^2} \le 16 \) \(\Rightarrow \mathop {\max }\limits_{\left( {0;8} \right)} S\left( x \right) = 16\,khi\,x = 4\)
Phòng GDĐT Thoại Sơn