Lớp 10Tài Nguyên

Giải bài 2 trang 77 SGK Toán 10 tập 1 – Cánh diều

Cho tam giác ABC có \(AB = 5,BC = 7,\widehat A = {120^o}.\) Tính độ dài cạnh AC.

Phương pháp giải – Xem chi tiết

Bạn đang xem: Giải bài 2 trang 77 SGK Toán 10 tập 1 – Cánh diều

Bước 1: Tính sin C, bằng cách áp dụng định lí sin trong tam giác ABC: \(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}}\)

Bước 2: Suy ra góc \(\widehat C,\widehat B\). Tính AC bằng cách áp dụng định lí cosin:

\(A{C^2} = A{B^2} + B{C^2} – 2.AB.BC.\cos B\)

Lời giải chi tiết

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}}\)

\( \Rightarrow \sin C = \sin A.\frac{{AB}}{{BC}} = \sin {120^o}.\frac{5}{7} = \frac{{5\sqrt 3 }}{{14}}\)

\( \Rightarrow \widehat C \approx 38,{2^o}\) hoặc \(\widehat C \approx 141,{8^o}\) (Loại)

Ta có: \(\widehat A = {120^o},\widehat C = 38,{2^o}\)\( \Rightarrow \widehat B = {180^o} – \left( {{{120}^o} + 38,{2^o}} \right) = 21,{8^o}\)

Áp dụng định lí cosin trong tam giác ABC ta có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} – 2.AB.BC.\cos B\\ \Leftrightarrow A{C^2} = {5^2} + {7^2} – 2.5.7.\cos 21,{8^o}\\ \Rightarrow A{C^2} \approx 9\\ \Rightarrow AC = 3\end{array}\)

Vậy độ dài cạnh AC là 3.

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Giải bài 2 trang 77 SGK Toán 10 tập 1 – Cánh diều

Cho tam giác ABC có \(AB = 5,BC = 7,\widehat A = {120^o}.\) Tính độ dài cạnh AC.

Phương pháp giải – Xem chi tiết

Bước 1: Tính sin C, bằng cách áp dụng định lí sin trong tam giác ABC: \(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}}\)

Bước 2: Suy ra góc \(\widehat C,\widehat B\). Tính AC bằng cách áp dụng định lí cosin:

\(A{C^2} = A{B^2} + B{C^2} – 2.AB.BC.\cos B\)

Lời giải chi tiết

Áp dụng định lí sin trong tam giác ABC ta có:

\(\frac{{AB}}{{\sin C}} = \frac{{BC}}{{\sin A}}\)

\( \Rightarrow \sin C = \sin A.\frac{{AB}}{{BC}} = \sin {120^o}.\frac{5}{7} = \frac{{5\sqrt 3 }}{{14}}\)

\( \Rightarrow \widehat C \approx 38,{2^o}\) hoặc \(\widehat C \approx 141,{8^o}\) (Loại)

Ta có: \(\widehat A = {120^o},\widehat C = 38,{2^o}\)\( \Rightarrow \widehat B = {180^o} – \left( {{{120}^o} + 38,{2^o}} \right) = 21,{8^o}\)

Áp dụng định lí cosin trong tam giác ABC ta có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} – 2.AB.BC.\cos B\\ \Leftrightarrow A{C^2} = {5^2} + {7^2} – 2.5.7.\cos 21,{8^o}\\ \Rightarrow A{C^2} \approx 9\\ \Rightarrow AC = 3\end{array}\)

Vậy độ dài cạnh AC là 3.

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close