Lớp 12Tài Nguyên

Giải bài 4 trang 18 SGK Giải tích 12

Chứng minh rằng với mọi giá trị của tham số \(m\), hàm số

Related Articles

\(y{\rm{ }} = {\rm{ }}{x^3}-{\rm{ }}m{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1\)

Bạn đang xem: Giải bài 4 trang 18 SGK Giải tích 12

luôn luôn có một điểm cực đại và một điểm cực tiểu.

Phương pháp giải – Xem chi tiết

B1: Tính \(y’\)

B2: Chứng tỏ phương trình \(y’=0\) luôn có 2 nghiệm phân biệt, với mọi m

Từ đó suy ra dấy của \(y’\) và sự tồn tại cực đại cực tiểu.

Lời giải chi tiết

TXĐ: \(D = \mathbb R.\)

Ta có: \(y'{\rm{ }} = {\rm{ }}3{x^2}-{\rm{ }}2mx{\rm{ }}-{\rm{ }}2{\rm{ }}\)

Xét phương trình: \(3{x^2}-2mx-2=0\)

Có: \(\Delta ‘ = {\rm{ }}{m^{2}} – (-2).3 = {\rm{ }}{m^{2}} +6 > {\rm{ }}0 \,\,\forall m \)

\(\Rightarrow\) phương trình \(y’ = 0\) luôn có hai nghiệm phân biệt \(x_1, x_2\).

Giả sử \(x_1 < x_2\), ta có bảng biến thiên:

Dễ thấy hàm số đạt cực đại tại \(x=x_1\) và đạt cực tiểu tại \(x=x_2\).

Vậy hàm số luôn có một cực đại và một cực tiểu.

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Giải bài 4 trang 18 SGK Giải tích 12

Chứng minh rằng với mọi giá trị của tham số \(m\), hàm số

\(y{\rm{ }} = {\rm{ }}{x^3}-{\rm{ }}m{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}1\)

luôn luôn có một điểm cực đại và một điểm cực tiểu.

Phương pháp giải – Xem chi tiết

B1: Tính \(y’\)

B2: Chứng tỏ phương trình \(y’=0\) luôn có 2 nghiệm phân biệt, với mọi m

Từ đó suy ra dấy của \(y’\) và sự tồn tại cực đại cực tiểu.

Lời giải chi tiết

TXĐ: \(D = \mathbb R.\)

Ta có: \(y'{\rm{ }} = {\rm{ }}3{x^2}-{\rm{ }}2mx{\rm{ }}-{\rm{ }}2{\rm{ }}\)

Xét phương trình: \(3{x^2}-2mx-2=0\)

Có: \(\Delta ‘ = {\rm{ }}{m^{2}} – (-2).3 = {\rm{ }}{m^{2}} +6 > {\rm{ }}0 \,\,\forall m \)

\(\Rightarrow\) phương trình \(y’ = 0\) luôn có hai nghiệm phân biệt \(x_1, x_2\).

Giả sử \(x_1 < x_2\), ta có bảng biến thiên:

Dễ thấy hàm số đạt cực đại tại \(x=x_1\) và đạt cực tiểu tại \(x=x_2\).

Vậy hàm số luôn có một cực đại và một cực tiểu.

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close