Lớp 11Tài Nguyên

Giải bài 5 trang 18 SGK Đại số và Giải tích 11

Dựa vào đồ thị hàm số \(y = \cos x\), tìm các giá trị của \(x\) để \(\cos x = \dfrac{1}{2}\).

Bạn đang xem: Giải bài 5 trang 18 SGK Đại số và Giải tích 11

Phương pháp giải – Xem chi tiết

B1: Vẽ đường thẳng \(d: y= \dfrac{1}{2}\) ( song song và ở trên trục hoành, cách trục hoành một khoảng là 1/2)

B2: xác định các điểm cắt của d và đồ thị, dự đoán giá trị của x.

B3. Dựa vào tính tuần hoàn để KL nghiệm.

Lời giải chi tiết

Nghiệm của phương trình \(\cos x = \dfrac{1}{2}\)  là các hoành độ giao điểm của đường thẳng \(y= \dfrac{1}{2}\) và đồ thị \(y = \cos x\).

Trong đó đường thẳng \(y= \dfrac{1}{2}\) là đường thẳng song song với trục hoành, đi qua điểm \(A(0, \frac 1 2) \), còn hàm số \(y = cosx\) có đồ thị như hình dưới

Cách 1:

Ta xác định các giao điểm, lấy hoành độ (tức là gióng xuống trục Ox)

Suy ra \(x =  \pm {\pi  \over 3} + k2\pi (k \in Z)\).

Cách 2: Xét trong đoạn \([-π ; π] \) và sử dụng tính tuần hoàn để suy ra tất cả các giá trị của \(x\)

Dễ thấy: trong đoạn này chỉ có giao điểm ứng với \(x =  \pm {\pi  \over 3}\) thỏa mãn  \(\cos x = \dfrac{1}{2}\)

Suy ra các giá trị của \(x\) là \(x =  \pm {\pi  \over 3} + k2\pi (k \in Z)\).

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Giải bài 5 trang 18 SGK Đại số và Giải tích 11

Dựa vào đồ thị hàm số \(y = \cos x\), tìm các giá trị của \(x\) để \(\cos x = \dfrac{1}{2}\).

Phương pháp giải – Xem chi tiết

B1: Vẽ đường thẳng \(d: y= \dfrac{1}{2}\) ( song song và ở trên trục hoành, cách trục hoành một khoảng là 1/2)

B2: xác định các điểm cắt của d và đồ thị, dự đoán giá trị của x.

B3. Dựa vào tính tuần hoàn để KL nghiệm.

Lời giải chi tiết

Nghiệm của phương trình \(\cos x = \dfrac{1}{2}\)  là các hoành độ giao điểm của đường thẳng \(y= \dfrac{1}{2}\) và đồ thị \(y = \cos x\).

Trong đó đường thẳng \(y= \dfrac{1}{2}\) là đường thẳng song song với trục hoành, đi qua điểm \(A(0, \frac 1 2) \), còn hàm số \(y = cosx\) có đồ thị như hình dưới

Cách 1:

Ta xác định các giao điểm, lấy hoành độ (tức là gióng xuống trục Ox)

Suy ra \(x =  \pm {\pi  \over 3} + k2\pi (k \in Z)\).

Cách 2: Xét trong đoạn \([-π ; π] \) và sử dụng tính tuần hoàn để suy ra tất cả các giá trị của \(x\)

Dễ thấy: trong đoạn này chỉ có giao điểm ứng với \(x =  \pm {\pi  \over 3}\) thỏa mãn  \(\cos x = \dfrac{1}{2}\)

Suy ra các giá trị của \(x\) là \(x =  \pm {\pi  \over 3} + k2\pi (k \in Z)\).

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close