Lớp 12Tài Nguyên

Giải bài 7 trang 44 SGK Giải tích 12

Cho hàm số


Related Articles

Cho hàm số y = \(\dfrac{1}{4}x^{4}+\dfrac{1}{2}x^{2}+m\).

LG a

Bạn đang xem: Giải bài 7 trang 44 SGK Giải tích 12

a) Với giá trị nào của tham số \(m\), đồ thị của hàm số đi qua điểm \((-1 ; 1)\) ?

Phương pháp giải:

Thay tọa độ điểm đề bài đã cho vào công thức hàm số để tìm m.

Lời giải chi tiết:

Điểm \((-1 ; 1)\) thuộc đồ thị của hàm số \(⇔1=\dfrac{1}{4}(-1)^{4}+\dfrac{1}{2}(-1)^{2}+m\) \(\Leftrightarrow m=\dfrac{1}{4}\).

LG b

b) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số khi \(m = 1\).

Phương pháp giải:

Thay giá trị m đã cho vào công thức hàm số, sau đó khảo sát và vẽ đồ thị hàm số theo các bước.

Lời giải chi tiết:

Với \(m = 1\) \(\Rightarrow y=\dfrac{1}{4}x^{4}+\dfrac{1}{2}x^{2}+1\) .

Tập xác định:\(\mathbb R\).

* Sự biến thiên:

Ta có: \(y’=x^{3}+x=x(x^{2}+1) \) \(\Rightarrow y’ = 0 ⇔ x = 0\).

– Hàm số đồng biến trên khoảng \((0;+\infty)\), nghịch biến trên khoảng \((-\infty;0)\)

– Cực trị:

    Hàm số đạt cực tiểu tại \(x=0\); \(y_{CT}=1\)

– Giới hạn: \(\mathop {\lim y}\limits_{x \to – \infty } = + \infty\), \(\mathop {\lim y}\limits_{x \to + \infty } = + \infty\)

– Bảng biến thiên:

* Đồ thị

Đồ thị hàm số giao trục \(Oy\) tại điểm \((0;1)\).

LG c

c) Viết phương trình tiếp tuyến của \((C)\) tại điểm có tung độ bằng \(\dfrac{7}{4}\).

Phương pháp giải:

Xác định tọa độ điểm đề bài cho tung độ bằng cách thay tung độ đề bài đã cho vào công thức hàm số để tìm hoành độ các điểm đó.

+) Viết phương trình tiếp tuyến của đồ thị hàm số tại  \(M\left( {{x_0};{y_0}} \right)\) bằng công thức:  \(y = y’\left( {{x_0}} \right)\left( {x – {x_0}} \right) + {y_0}\).

Lời giải chi tiết:

Gọi điểm M thuộc đồ thị hàm số và có tung độ bằng \(\dfrac{7}{4}\) là: \(M\left( {{x_0}; \dfrac{7}{4}} \right)\).

Khi đó: \(\dfrac{1}{4}x_0^4 + \dfrac{1}{2}x_0^2 + 1 = \dfrac{7}{4}\) \( \Leftrightarrow x_0^4 + 2x_0^2 + 4 = 7\)

\(\begin{array}{l}\Leftrightarrow x_0^4 + 2x_0^2 – 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x_0^2 = 1\\x_0^2 =  – 3\;\;\left( {ktm} \right)\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} =  – 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}M_1\left( {1;\dfrac{7}{4}} \right)\\M_2\left( { – 1;\;\dfrac{7}{4}} \right)\end{array} \right..\end{array}\)

Phương trình tiếp tuyến của \((C)\) tại \(M_1\) là:  \(y = y'(1)(x – 1) + \dfrac{7}{4} ⇔ y = 2x -\dfrac{1}{4}\)

Phương trình tiếp tuyến của \((C)\) tại \(M_2\) là:  \(y= y'(-1)(x + 1)+  \dfrac{7}{4} \) \(⇔ y = -2x – \dfrac{1}{4}\)

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Giải bài 7 trang 44 SGK Giải tích 12

Cho hàm số


Cho hàm số y = \(\dfrac{1}{4}x^{4}+\dfrac{1}{2}x^{2}+m\).

LG a

a) Với giá trị nào của tham số \(m\), đồ thị của hàm số đi qua điểm \((-1 ; 1)\) ?

Phương pháp giải:

Thay tọa độ điểm đề bài đã cho vào công thức hàm số để tìm m.

Lời giải chi tiết:

Điểm \((-1 ; 1)\) thuộc đồ thị của hàm số \(⇔1=\dfrac{1}{4}(-1)^{4}+\dfrac{1}{2}(-1)^{2}+m\) \(\Leftrightarrow m=\dfrac{1}{4}\).

LG b

b) Khảo sát sự biến thiên và vẽ đồ thị \((C)\) của hàm số khi \(m = 1\).

Phương pháp giải:

Thay giá trị m đã cho vào công thức hàm số, sau đó khảo sát và vẽ đồ thị hàm số theo các bước.

Lời giải chi tiết:

Với \(m = 1\) \(\Rightarrow y=\dfrac{1}{4}x^{4}+\dfrac{1}{2}x^{2}+1\) .

Tập xác định:\(\mathbb R\).

* Sự biến thiên:

Ta có: \(y’=x^{3}+x=x(x^{2}+1) \) \(\Rightarrow y’ = 0 ⇔ x = 0\).

– Hàm số đồng biến trên khoảng \((0;+\infty)\), nghịch biến trên khoảng \((-\infty;0)\)

– Cực trị:

    Hàm số đạt cực tiểu tại \(x=0\); \(y_{CT}=1\)

– Giới hạn: \(\mathop {\lim y}\limits_{x \to – \infty } = + \infty\), \(\mathop {\lim y}\limits_{x \to + \infty } = + \infty\)

– Bảng biến thiên:

* Đồ thị

Đồ thị hàm số giao trục \(Oy\) tại điểm \((0;1)\).

LG c

c) Viết phương trình tiếp tuyến của \((C)\) tại điểm có tung độ bằng \(\dfrac{7}{4}\).

Phương pháp giải:

Xác định tọa độ điểm đề bài cho tung độ bằng cách thay tung độ đề bài đã cho vào công thức hàm số để tìm hoành độ các điểm đó.

+) Viết phương trình tiếp tuyến của đồ thị hàm số tại  \(M\left( {{x_0};{y_0}} \right)\) bằng công thức:  \(y = y’\left( {{x_0}} \right)\left( {x – {x_0}} \right) + {y_0}\).

Lời giải chi tiết:

Gọi điểm M thuộc đồ thị hàm số và có tung độ bằng \(\dfrac{7}{4}\) là: \(M\left( {{x_0}; \dfrac{7}{4}} \right)\).

Khi đó: \(\dfrac{1}{4}x_0^4 + \dfrac{1}{2}x_0^2 + 1 = \dfrac{7}{4}\) \( \Leftrightarrow x_0^4 + 2x_0^2 + 4 = 7\)

\(\begin{array}{l}\Leftrightarrow x_0^4 + 2x_0^2 – 3 = 0 \Leftrightarrow \left[ \begin{array}{l}x_0^2 = 1\\x_0^2 =  – 3\;\;\left( {ktm} \right)\end{array} \right.\\\Leftrightarrow \left[ \begin{array}{l}{x_0} = 1\\{x_0} =  – 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}M_1\left( {1;\dfrac{7}{4}} \right)\\M_2\left( { – 1;\;\dfrac{7}{4}} \right)\end{array} \right..\end{array}\)

Phương trình tiếp tuyến của \((C)\) tại \(M_1\) là:  \(y = y'(1)(x – 1) + \dfrac{7}{4} ⇔ y = 2x -\dfrac{1}{4}\)

Phương trình tiếp tuyến của \((C)\) tại \(M_2\) là:  \(y= y'(-1)(x + 1)+  \dfrac{7}{4} \) \(⇔ y = -2x – \dfrac{1}{4}\)

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close