Lớp 12Tài Nguyên

Lý thuyết phép chia số phức

Nhân cả tử và mẫu với a – bi (số phức liên hợp của mẫu).


Related Articles

Cho hai số phức \(c+di\) và \(a+bi\ne 0\).

Khi đó \( \dfrac{c+di}{a+bi}=\dfrac{(c+di)(a-bi)}{a^{2}+b^{2}}=\dfrac{ac+bd}{a^{2}+b^{2}}+\dfrac{ad-bc}{a^{2}+b^{2}}i\)

(Nhân cả tử và mẫu với \(a – bi\) (số phức liên hợp của mẫu)).

Bạn đang xem: Lý thuyết phép chia số phức

Chú ý: Với \(z \ne 0\) ta có:

– Số phức nghịch đảo của \(z\) là: \(z^{-1}=\dfrac{1}{z}= \dfrac{\overline{z} }{|z|^{2}}.\)

– Thương của \(z’\) chia cho \(z\) là:

\( \dfrac{z’}{z}= z’z^{-1}\) \(=  \dfrac{z’\overline{z}}{|z|^{2}}=\dfrac{z’\overline{z}}{z\overline{z}}\)

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Lý thuyết phép chia số phức

Nhân cả tử và mẫu với a – bi (số phức liên hợp của mẫu).


Cho hai số phức \(c+di\) và \(a+bi\ne 0\).

Khi đó \( \dfrac{c+di}{a+bi}=\dfrac{(c+di)(a-bi)}{a^{2}+b^{2}}=\dfrac{ac+bd}{a^{2}+b^{2}}+\dfrac{ad-bc}{a^{2}+b^{2}}i\)

(Nhân cả tử và mẫu với \(a – bi\) (số phức liên hợp của mẫu)).

Chú ý: Với \(z \ne 0\) ta có:

– Số phức nghịch đảo của \(z\) là: \(z^{-1}=\dfrac{1}{z}= \dfrac{\overline{z} }{|z|^{2}}.\)

– Thương của \(z’\) chia cho \(z\) là:

\( \dfrac{z’}{z}= z’z^{-1}\) \(=  \dfrac{z’\overline{z}}{|z|^{2}}=\dfrac{z’\overline{z}}{z\overline{z}}\)

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.