Lớp 12Tài Nguyên

Lý thuyết sự đồng biến, nghịch biến của hàm số

Kí hiệu K là một khoảng, một đoạn hoặc một nửa khoảng.


Related Articles

Kí hiệu K là một khoảng, một đoạn hoặc một nửa khoảng.

1. Định nghĩa

Hàm số y = f(x) đồng biến (tăng) trên K ⇔ ∀x1, x∈ K, x< x2 thì f(x1) < f(x2).

Bạn đang xem: Lý thuyết sự đồng biến, nghịch biến của hàm số

Hàm số y = f(x) nghịch biến (giảm) trên K ⇔ ∀x1, x∈ K, x< xthì f(x1) > f(x2).

2. Điều kiện cần để hàm số đơn điệu

Cho hàm số f có đạo hàm trên K.

 – Nếu f đồng biến trên K thì f'(x) ≥ 0 với mọi x ∈ K.

 – Nếu f nghịch biến trên K thì f'(x) ≤ 0 với mọi x ∈ K.

3. Điều kiện đủ để hàm số đơn điệu

Cho hàm số f có đạo hàm trên K.

– Nếu f'(x) > 0 với mọi x ∈ K thì f đồng biến trên K.

– Nếu f'(x) < 0 với mọi x ∈ K thì f nghịch biến trên K.

– Nếu f'(x) = 0 với mọi x ∈ K thì f là hàm hằng trên K.

Định lý mở rộng

 – Nếu f'(x) ≥ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc K thì f đồng biến trên K.

 – Nếu f'(x) ≤ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc K thì f nghịch biến trên K.

4. Quy tắc xét tính đơn điệu của hàm số

 i) Tìm tập xác định

 ii) Tính đạo hàm f'(x). Tìm các điểm x(i= 1 , 2 ,…, n) mà tại đó đạo hàm bằng 0  hoặc không xác định.

 iii) Sắp xếp các điểm xtheo thứ tự tăng dần và lập bảng biến thiên.

 iv) Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Phòng GDĐT Thoại Sơn

Đăng bởi: Phòng GDDT Thoại Sơn

Chuyên mục: Tài Nguyên Học Tập

Xem thêm Lý thuyết sự đồng biến, nghịch biến của hàm số

Kí hiệu K là một khoảng, một đoạn hoặc một nửa khoảng.


Kí hiệu K là một khoảng, một đoạn hoặc một nửa khoảng.

1. Định nghĩa

Hàm số y = f(x) đồng biến (tăng) trên K ⇔ ∀x1, x∈ K, x< x2 thì f(x1) < f(x2).

Hàm số y = f(x) nghịch biến (giảm) trên K ⇔ ∀x1, x∈ K, x< xthì f(x1) > f(x2).

2. Điều kiện cần để hàm số đơn điệu

Cho hàm số f có đạo hàm trên K.

 – Nếu f đồng biến trên K thì f'(x) ≥ 0 với mọi x ∈ K.

 – Nếu f nghịch biến trên K thì f'(x) ≤ 0 với mọi x ∈ K.

3. Điều kiện đủ để hàm số đơn điệu

Cho hàm số f có đạo hàm trên K.

– Nếu f'(x) > 0 với mọi x ∈ K thì f đồng biến trên K.

– Nếu f'(x) < 0 với mọi x ∈ K thì f nghịch biến trên K.

– Nếu f'(x) = 0 với mọi x ∈ K thì f là hàm hằng trên K.

Định lý mở rộng

 – Nếu f'(x) ≥ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc K thì f đồng biến trên K.

 – Nếu f'(x) ≤ 0 với mọi x ∈ K và f'(x) = 0 chỉ tại một số hữu hạn điểm thuộc K thì f nghịch biến trên K.

4. Quy tắc xét tính đơn điệu của hàm số

 i) Tìm tập xác định

 ii) Tính đạo hàm f'(x). Tìm các điểm x(i= 1 , 2 ,…, n) mà tại đó đạo hàm bằng 0  hoặc không xác định.

 iii) Sắp xếp các điểm xtheo thứ tự tăng dần và lập bảng biến thiên.

 iv) Nêu kết luận về các khoảng đồng biến, nghịch biến của hàm số.

Phòng GDĐT Thoại Sơn

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Check Also
Close