Trả lời câu hỏi 2 trang 35 SGK Hình học 12
Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên mặt phẳng ta được một nửa hình tròn bán kính R. Hỏi hình nón đó có bán kính r của đường tròn đáy và góc ở đỉnh của hình nón bằng bao nhiêu ?
Bạn đang xem: Trả lời câu hỏi 2 trang 35 SGK Hình học 12
Lời giải chi tiết
Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên mặt phẳng ta được một nửa hình tròn bán kính R
⇒ đường sinh có độ dài bằng R và chu vi đường tròn đáy (bán kính r) bằng nửa chu vi đường tròn bán kính R.
Chu vi đường tròn đáy hình nón chính là nửa chu vi đường tròn bán kính \(R\) nên \(2\pi r = \dfrac{1}{2}.2\pi R \Leftrightarrow r = \dfrac{R}{2}\)
Ta có: \(\displaystyle \sin \widehat {{A_1}} = {r \over l} = {r \over R} = {1 \over 2} \Rightarrow \widehat {{A_1}} = {30^0}\)
Suy ra, góc ở đỉnh hình chóp: \(\widehat A = 2\widehat {{A_1}} = {2.30^0} = {60^0}\)
Phòng GDĐT Thoại Sơn
Đăng bởi: Phòng GDDT Thoại Sơn
Chuyên mục: Tài Nguyên Học Tập
Xem thêm Trả lời câu hỏi 2 trang 35 SGK Hình học 12
Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên mặt phẳng ta được một nửa hình tròn bán kính R. Hỏi hình nón đó có bán kính r của đường tròn đáy và góc ở đỉnh của hình nón bằng bao nhiêu ?
Lời giải chi tiết
Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên mặt phẳng ta được một nửa hình tròn bán kính R
⇒ đường sinh có độ dài bằng R và chu vi đường tròn đáy (bán kính r) bằng nửa chu vi đường tròn bán kính R.
Chu vi đường tròn đáy hình nón chính là nửa chu vi đường tròn bán kính \(R\) nên \(2\pi r = \dfrac{1}{2}.2\pi R \Leftrightarrow r = \dfrac{R}{2}\)
Ta có: \(\displaystyle \sin \widehat {{A_1}} = {r \over l} = {r \over R} = {1 \over 2} \Rightarrow \widehat {{A_1}} = {30^0}\)
Suy ra, góc ở đỉnh hình chóp: \(\widehat A = 2\widehat {{A_1}} = {2.30^0} = {60^0}\)
Phòng GDĐT Thoại Sơn